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Propagation and interaction of waves
in a relaxing gas

By CH. RADHA AND V. D. SHARMA

Department of Mathematics, Indian Institute of Technology, Bombay,
Powai 400076, India

Propagation of disturbances through a uniform region of a relaxing gas in a duct with
spatially varying cross section is analysed using the methods of relatively undistorted
waves and weakly nonlinear geometrical optics. Particular attention is focused on sit-
uations when the disturbance amplitude is finite, arbitrarily small and not so small.
In certain situations a complete history of the evolutionary behaviour of waves in-
cluding weak shocks can be traced out. The asymptotic decay laws for weak shocks
in a non-relaxing gas are exactly recovered. The damping effects of relaxation and
non-planar wavefront configurations on the distortion, attenuation and shock for-
mation of pulses, as they propagate, are described in detail. In the small-amplitude
high-frequency limit, a solution up to the second order is obtained and numerical
computations are carried out for typical values of the physical parameters involved
in the solution. Transport equations are derived for signals having all possible wave
modes which are mutually coupled and interact resonantly among themselves. The
progressive wave approach describes the far field behaviour which is governed by the
generalized Burger’s equation.

1. Introduction

The effect of nonlinearity on wave propagation leading to a multivalued solution has
been the subject of great interest from both mathematical and physical view points.
Asymptotic analysis of nonlinear hyperbolic waves has received great attention dur-
ing the past decade; it has produced several new and interesting results, which may
find enumerous applications in the field of continuum mechanics.

Varley & Cumberbatch (1966) introduced the theory of relatively undistorted
waves to take into account nonlinear phenomena which are governed by nonlin-
ear equations. Based on this method, which places no restriction on the wave am-
plitude, Dunwoody (1968) has discussed high-frequency plane waves in ideal gases
with internal dissipation. This method, which has been discussed in detail by Sey-
mour & Mortell (1975), proposes an expansion scheme which generalizes that used
in linear geometrical acoustics to account for amplitude dispersion and shock for-
mation. Seymour & Mortell (1975) have shown that by representing high-frequency
waves in terms of modulated simple waves with slowly changing Riemann invari-
ants, the parameter expansion technique of geometrical optics can be modified to
include finite-amplitude waves. The modulated simple wave theory has been used by
Varley & Cumberbatch (1970), Parker (1972), Parker & Seymour (1980), McCarthy
(1984) and Gupta et al. (1992) to discuss high-frequency waves in diverse material
media. Choquet-Bruhat (1969), while dealing with small-amplitude waves, proposed
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a method similar to that of Varley & Cumberbatch (1966) to discuss shockless so-
lutions of hyperbolic systems which depend upon a single phase function. A general
discussion of single phase progressive waves has been given by Germain (1971), Fusco
(1982) and Hunter & Keller (1983). The progressive wave approach has been used by
Sharma et al. (1987, 1989) for analysing the decay of a saw-tooth profile in MHD, and
to describe the signal transmission in a traffic flow respectively. In this context, the
pioneering work due to Ockendon & Spence (1969) and Blythe (1969), which deals
with one-dimensional planar unsteady motion in a gas with internal dissipation is
worth mentioning. An interesting study on the evolution of plane compressive pulses
in reacting gases has been carried out by Clarke; for this, the reader is referred to his
illuminating papers (Clarke 1978, 1979) and the survey article (Clarke 1984). The
non-resonant multiwave theory of weakly nonlinear geometrical optics, proposed by
Hunter & Keller (1983), has been further extended by Majda & Rosales (1984) and
Hunter et al. (1986) which enables one to take into consideration systems where
many waves coexist and interact with one another resonantly.

In this paper, using the related procedures, we present a detailed analysis of non-
linear waves advancing into a uniform region of a relaxing gas in a duct with spatially
varying cross section. The particular non-equilibrium phenomenon of interest is the
vibrational relaxation of a pure inviscid gas; the rotational and translational modes
are assumed to be in local thermodynamical equilibrium throughout. An attempt is
made to relate and unify various approaches, which appear formally to be quite dis-
joint, by drawing the connection between the results obtained by using them. After
dispensing with necessary preliminaries in the next section, we consider situations in
which only one component wave is excited and, then, study the effects of relaxation
and non-planar geometry on wave propagation. In §3, we discuss finite-amplitude
disturbances using relatively undistorted wave approximation, and derive a condi-
tion for the validity of this approximation in the small-amplitude limit. Next, we
consider the implications of this theory by considering the amplitude limit to be not
so small, and therefore extend the analysis of the preceding subsection to the next
order. Finally, in this section, the damping effects of relaxation and wavefront cur-
vature on the small-amplitude high-frequency pulses are examined through a formal
asymptotic analysis. In §4, we study the situation when more than one component
wave is excited and consider the coupling between the interaction and distortion of
the component waves that make up the motion. Attention is drawn to the connection
between the results obtained here for the off resonance case, and the corresponding
results obtained in §3. In §5, we use the ideas of §3 to discuss low-frequency wave
process. The last section consists of some final remarks and conclusions.

2. Preliminaries

We consider disturbances in a one-dimensional unsteady flow of a relaxing gas in
a duct of cross sectional area A(z), where z is the distance along the duct. The gas
molecules have only one lagging internal mode (i.e. vibrational relaxation) and the
various transport effects are negligible. The governing equations, using summation
convention, can be written in the form (see Clarke 1976)

OV + Aijaxvj +B;=0, 4,j=12,3/4, @)

where V' and B; are the components of column vectors V and B defined as V =
(pyu,0,p)T, B = (puf2, 0,—Q, pau2+(y—1)pQ)T with 2 = A’/ A; the superscript
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Propagation and interaction of waves in a relaxing gas 171

‘T” denotes transposition. A;; are the components of 4 x 4 matrix A with non-zero
components Ay = Ay = Agz = Ay = u, A1z = p, Aoy = 1/p and Asp = 9@2- Here
u is the particle velocity along z-axis, t the time, p the density, p the pressure, o
the vibrational energy, v the frozen specific heat ratio and a = (yp/p)'/? the frozen
speed of sound in the gas. A prime denotes an ordinary derivative with respect to x,
and the operator 0 with a letter subscript denotes partial differentiation with respect
to the indicated variable. The quantity @), which is a known function of p, p and o,
denotes the rate of change of vibrational energy. The situation ¢ = 0 corresponds to
a physical process involving no relaxation; indeed, it includes both the cases in which
the vibrational mode is either inactive or follows the translational mode according
as the flow is either frozen (0 = const.) or in equilibrium (¢ = ¢*), where o* is
the equilibrium value of ¢ evaluated at local p and p. Following Johannesen & Scott
(1978) and Scott & Johannesen (1982), the entity @ is given by

Q= (c"—0)/1, 0" =00+ c(ppo) " (pPo— PP0), (2)

where the suffix ‘0’ refers to the initial rest condition, and the quantities 7 and c,
which are respectively the relaxation time and the ratio of vibrational specific heat
to the specific gas constant, are assumed to be constant.

3. Relatively undistorted waves

The method of relatively undistorted waves was introduced by Varley & Cumber-
batch (1966) to take into account the amplitude dispersion and possible shock forma-
tion. The advantage of this method, which makes no assumption on the magnitude
of a disturbance, lies in the fact that the solution can be obtained by solving ordi-
nary differential equations. Indeed, the solution vector V' is said to define a relatively
undistorted wave, if there exists a family of propagating wavelets ¢(x,t) = const.,
such that the magnitude of the rate of change of V moving with the wavelet is small
compared with the magnitude of rate of change of V at fixed ¢t. Let us consider
the transformation, x = z, t = T'(z, ¢), from (z,t) to (z,¢$) coordinate system, and
let V(z,t) = V(x,¢). Then a relatively undistorted wave is defined by the relation

9,V < |0,V. Thus, in a relatively undistorted wave 9,V ~ (9,T7)(8;V), and
consequently
|0,V < |0 V. (3)
In terms of independent variables (z, ¢), equation (1) becomes
(A (0.T) — 61-]-)8th = -Aijaxvj + B, (4)

where 6;; is the kronecker function. Equations (3) and (4) are compatible if |B;| =
O(|A4;;0,V7|), while (0,T)" is an eigenvalue of A. Otherwise, equation (4) would
completely determine the &;V* as linear forms in the 9,V *, and _(3) could not hold.
Accordingly, in such waves, where det |4;; — 6;(0<T)"!| = 0, V' must satisfy the
compatibility condition

Li(.Aijaij + Bz) =0, (5)
for every left eigenvector L of A corresponding to the eigenvalue (9,7)~'. Thus
the essential idea underlying in this method is based on a scheme of successive
approximations to the system (4) which, to a first approximation, is replaced by

(Aij = 650, T) )9,V 7 = 0. (6)

Phil. Trans. R. Soc. Lond. A (1995)
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Then, if R = (R;) is the right eigenvector of A corresponding to the eigenvalue
(0. T)~', equation (6) implies that to a first approximation

V" = k(d,2)R;, (7)

for some scalar k(¢,z). It is important to appreciate that equations (7) are ap-
proximate and can not, in general, be integrated to obtain relations in V'* which
are uniformly valid for all time. The terms which have been neglected in arriving
at (7) will, in general, ultimately produce first-order contributions to V *. However,
these contributions are negligible whenever the wave is a pulse or a high-frequency
disturbance (see Varley & Cumberbatch 1970).

The matrix A has eigenvalues v + a and u (with multiplicity two); here we are
concerned with the solution in the region = > xo, where a motion consisting of only
one component wave, associated with the eigenvalue (9,7)~! = u+a, is perturbed at
the boundary x = xy by an applied pressure p(zo,t) = II(t). It may be noted that for
nonlinear systems, there is, in general, no superposition principle so that when more
than one wave mode is excited, the propagation of the individual component waves
can not be calculated independently. Consequently, the problem involving nonlinear
interaction of component waves needs a different approach, which is outlined in § 5.
The left and right eigenvectors of A corresponding to the eigenvalue

(0, T) ' =u+a (8)

are L= (0, pa, 0, 1)7 k= (P, a,0, paz)T' <9)

(a) Finite-amplitude disturbances
Let us consider the situation when the disturbance, which is headed by the front
¢(x,t) = 0, is moving into a region, where before its arrival the gas is in a uniform
state at rest with u = 0, p = pg, p = po and o = 0gy. It is possible to choose the label,
¢, of each wavelet so that ¢ =t on x = zp; consequently the boundary conditions
for p and T' become

p=II(¢), T=¢ at x=ux. (10)
To a first approximation, conditions in the wave region, associated with (9,7)~! =
u-ta, are determined by the differential relations (7), which can be formally integrated

subject to the uniform reference values u = 0, p = pg, p = po and 0 = 0y on the
leading front ¢ = 0. Thus we have

p=po(p/po)'7,  w=2a0(y — 1) {(p/po) "~ V/* — 1},
a = ag(p/po)""V/?, o = oy,

(11)

which hold at any x on any wavelet ¢ = const. Equation (5), in view of (9); and
(11), provides the following transport equations for the variation of p and T at each
wavelet ¢ = const.:

(v = 1)po (p)w
8,p+ TP (P
P 4a0F(p) Po

y 2a8f2 (£>(v—l)/v (E)(v—l)/% L
v —1 \po Po

Phil. Trans. R. Soc. Lond. A (1995)
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where F(p) = {((y+1)/2)(p/po) "~ V/?7 — 1}. Equation (12), on using (2) and (11),
may be integrated by using the boundary condition (10); to give p = P(z, II(¢));
once p is known, equation (13) may be integrated subject to (10)2 to determine
t = T(z,¢). Subsequently p(x,t) may be obtained, and hence p(z,t), u(z,t) and
a(z,t). As a matter of fact, the integration of (13) leads to the determination of the
location of ¢ wavelets in the form

ngb—l—/x/l(s,ﬂ(d)))ds,

where A = (y—1)/(2aoF(P(s,II(9)))).
From this result, it follows immediately that a shock forms on the wavelet ¢ at
the point zg, where

1+ 11’/ COnA(X, T (6e) dX = 0.
zg

The above results indicate that both the amplitude dispersion and shock formation
along any wavelet depend on the amplitude, I7(¢), carried by that wavelet. It is
discussed in detail in a subsection below, after we have first discussed the small-
amplitude simplifications.

(b) Small-amplitude waves

In the small-amplitude limit, equations (12) and (13) can be linearized about the
uniform reference state p = pg, p = po, 0 = 09, u = 0, to yield

Oapr + (a4 52)p; = 0, (8. T) = {1 —(v+1)(2poag) 'pi}ay’, (14)

where p; is the small perturbation of the equlibrium value pg and o = (y—1)%c/2vaoT,
which serves as the amplitude attenuation rate on account of relaxation; it may be
noted that « is identical with the absorption rate defined by Johannesen & Scott
(1978) and Scott & Johannesen (1982). The ideal gas case corresponds to a = 0.
The boundary conditions for p; and 7" which follow from (10) can be rewritten as

p=1(¢), T=¢ at z=ux, (15)

where |II(¢)| = |II(¢) — py| < 1. Equations (14), together with (15), yield on
integration

pr = 11(¢)9(), (16)
ao(T — ¢) = a — xo — (v + 1)(11($)/2poat) I (z0, , ), (17)
where '
(20,2, ) = / (A(s)/Ag) "2 exp(—a(s — o)) ds
and Y(z) = (A/Ag) ™2 exp(—a(z — x0)).

Equation (16) implies that for each wavelet ¢ = const., which decays exponentially,
the attenuation factor is independent of the amplitude II(¢) carried by the wavelet.
However, conditions at any z on a wavelet ¢; = const. are determined by the signal
carried by ¢, and are independent of the precursor wavelets 0 < ¢ < ¢1.

It may be recalled that for plane and radially symmetric flow configurations,

Phil. Trans. R. Soc. Lond. A (1995)
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(A/Ap) = (z/zo)™; and therefore the integral J converges to a finite limit J, as
r — 00, i.e.

1/a, (plane);
lim J(zo,z,a) = Jo = { (7z0/a)/? exp(axo)erfc (v/axg), (cylindrical);
o xoE(axg) exp(axy), (spherical);
(18)
where

erfc(x):27r_1/2/ exp(—t*)dt and E(x):/ t~!exp(—t) dt

are, respectively, the complementary error function and the exponential integral.
Thus J can be expressed as

J = Jo(1 - K(x)), (19)
where
exp(—a(z — zg)), (plane);
K(z) = q erfe (yax)/erfe (y/axg), (cylindrical);
E(az)/E(azg), (spherical).

Equation (17) indicates that a shock first forms at (x, ¢), where the minimum value
of z (i.e. z) is given by the solution of

H(z)=1—(II'(¢)/b)(1 - K(x)) =0, (20)

where b = 2pad /(v +1)Jy > 0 and II'(¢) = diI /d¢; since the expression (1 — K ()
monotonically increases from 0 to 1 as x increases from zy to oo, it follows that a
shock can only occur if II' > b > 0, and subsequently H(x) first vanishes at that
wavelet ¢ where II'(¢) is greatest. Expression for the shock formation distance on
the leading wavefront ¢ = 0, where (20) is exact, was pointed out by Johannesen &
Scott (1978). It may be noted that the relatively undistorted approximation is valid
only if

(11T > (a4 §2){1 + (v + 1)(2poag) Tp(x) ag H], (21)
which, in fact, corresponds to the slow modulation approximation (Varley & Cum-
berbatch 1970). As discussed above, a shock wave may be initiated in the flow region,
and once it is formed, it will propagate by separating the portions of the continuous

region. When the shock is weak, its location can be found from the equal area rule
(see Whitham 1974):

$2 R .
2 1(t)dt = (¢2 — ¢1){1(¢1) + I ($2)}, (22)
[o31
where ¢; and ¢, are the wavelets ahead of and behind the shock. For a weak shock
propagating into an undisturbed region, where II(¢,) = 0 for ¢; < 0, equation (22),
on using (17) and (19), becomes

2 R

I(t)dt = (v + 1)II*(¢2) (1 — K (2))Jo/4poap. (23)
0

This equation, in the limit o — 0, yields a result which agrees fully with the result

obtained by Whitham (1974) for non-relaxing gases. Assuming that the integral on

Phil. Trans. R. Soc. Lond. A (1995)
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1.1

pressure (p/ poa(z))

Figure 1. The variation of the dimensionless pressure $ (defined as (po + p1)/poa?) against the
dimensionless variable & (defined as (z — aot)/z0), using the initial profile Ia (defined in (25)).
The distortion of the profile is delineated at various distances before and after shock formation
on the leading wavelet, ¢=0, in cylindricallly (m = 1) and spherically (m = 2) symmetric flow
configurations of a non-relaxing gas (& = 0) for & = 0.35 and v = 1.4. Shock forms at (i)
#s = 4.79 (cylindrical) and (ii) £s = 10.81 (spherical). Form =1,& =1 (Ia), 2 =2 (Ila), £ =3
(IlTa), 2 = 4 (IVa), £ = 4.79 (Va), £ = 7 (VIa); for m = 2, £ = 1 (Ib), £ = 2 (IIb), £ = 4 (IIIb),
£ =6 (IVb), £ = 8 (Vb), & = 10.81 (VIb), & = 12 (VIIb).

the left-hand side of (23) is bounded, it follows that for sufficiently large x, I1(¢2)
stays in proportion to JS/ 2. Consequently, in view of (13) and (16), the pressure
jump, [p], across the shock, which is defined as the measure of shock amplitude,
decays like

exp(—az) (plane);
[p] o< &~ /2exp(—a2)  (cylindrical); (24)
&~ exp(—az) (spherical);

where & = axg and £ = z/z¢. For a non-relaxing gas (a =0), we find that as z — oo,
the shock decays like

&1/2 (plane);
(cylindrical);

& '(In&)~'/2  (spherical).

—3/4

R[>

[p] ~ xo

These asymptotic results for non-relaxing gases are in full accord with the earlier
results (Whitham 1974).

In order to trace the early history of shock decay after its formation on the leading
wave front ¢ = 0, we consider a special case in which the disturbance at the boundary

Phil. Trans. R. Soc. Lond. A (1995)
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T = xg is a pulse defined as

0, ¢ <0,
I1(¢) = Osin(app/xo), 0< ¢ < mxo/ao, 6> 0. (25)
0, ¢ > mxo/ao,

It may be recalled that H(z), in equation (20), first vanishes on that wavelet for
which 171’ (¢) has a maximum value greater than b, i.e. dag/xy > b; consequently the
shock first forms on the wavelet ¢ = 0 at a distance x = z,, nearest to xg, given by
the solution of

E(z) = (%(7’ + 1))(1 = K(z))6Jy =1, (26)
where é = 8/poad and jo = Jo/xo are the dimensionless constants. The distortion
of the pulse, defined in (25), is shown in figures 1 and 2. The usual steepening
of the compressive phase and flattening of the expansive phase of the wavelet are
quite evident from the distorted profiles. The depression and flattening of the peaks
with increasing &, which become even more pronounced on account of relaxation
or the wavefront geometry, indicate that the disturbance is undergoing a general
attenuation. Equation (20) shows that for & = 0, the pressure profile develops a
vertical slope, thereby indicating the appearence of a shock at & = 4.79 and 10.81 in
cylindrically and spherically symmetric flows respectively, while for & = 0.05, shocks
in respective flow configurations develop at & = 5.31 and 20.92. Thus, the presence
of relaxation or an increase in the wavefront curvature both serve to delay the onset
of a shock. Equation (23), in view of (25), then simplifies to give ¢, on the shock by
the following relation,

sin gy = 2(E(x) — 1)'/*/E(x), (27)

where ¢y = ¢oag /o is the dimensionless variable. Equation (27), together with (16)
and (25), implies

[5] = 263"/ exp(—a(& — 1)) (E(z) — 1)/?/E(), (28)

where p = p/ppad is the dimensionless pressure. Equation (28) shows that the shock
after its formation on ¢ = 0, at © = x, > g, grows to a maximum strength at
T = 1 > &5, where x; is given by the solution of E(z) = 2, and then decays
ultimately in proportion to 2~™/2 exp(—ax) as concluded above.

Let us now consider a special case in which the small disturbance at the boundary,
x = Xy, has a periodic wave form given by

11(¢) = bsin(3), 29)
where § < 0 and ¢ = ao®/xo, and consider the development over one cycle 0 < q§ <
27. In this case, the shock first forms on the wavelet ¢ = 7 at a distance z = x,
nearest to xo, given by the solution of (20); this can occur, of course, if |6]ag/z¢ > b.

Equations (17) and (22) are satisfied on the shock, if ¢, + ¢ = 27 and ¢y — by = 20,
where 6 is given by the solution of

—~

0/sind = 3(y+ 1)(1 — K(x))Jo|é], (30)
with § = 5/,00a%. The discontinuity in p at the shock is, therefore, given by
(9] = 2|6|(z/xo) ™2 exp(—a(x — xg))sinb, (31)

which shows that the shock starts with zero strength corresponding to 6§ — 0 at

Phil. Trans. R. Soc. Lond. A (1995)
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1.1

pressure (p/poa(z))

-22 -14 -0.6 0.2 1.0

&

Figure 2. Development of the pressure profile p against £, using the same initial profile (as in
figure 1), at the leading wavehead for 6 = 0.35, & = 0.05 and v = 1.4: the figure in the inset
shows the development on the wavehead, ¢ = 0, for m = 2 when the profile Vb develops a
vertical slope signifying the appearence of a shock at & = 20.92 in a relaxing gas. Shock forms
at (i) #s = 5.31 (cylindrical). For m =1, & = 1 (Ia), & = 2 (Ila), & = 3 (Illa), & = 4 (IVa),
£=25.31(Va),2 =7 (VIa); form=2,& =1 (Ib), £ =2 (IIb), £ = 3 (IlIb), £ =4 (IVb), & =5
(Vb), & = 10 (VIb), = 20.92 (VIIb).

x = s, given by the solution of (30). The shock amplitude decays to zero as 60 — 0.,
where 6, is given by the solution of 6,,,/sin(6,,,) = 5(v+1)|6|Jo. The shock strength
grows for 6 lying in the interval 0 < 6§ < 6., whereas it decays over the interval
0, < 6 < 6,,, thus exhibiting a maximum corresponding to 6 = 0, at a distance
x = x,, where both 6, and x, can be determined using (30) and the relation
A(& +m/23,)(sin b, — 0, cosB,) = (v + 1)|6]27™/? sin(26.) exp(—a(&. — 1)).

The shock decays ultimately with 8 = 6,,,, * — oo, according to the law

[B] ~ A& ~™2 exp(—aid), (32)
where A = 46,,, /(7 +1)Jo. However, in the absence of relaxation, it follows from (30)
and (31) that as § — 7, © — oo, the shock decays like

27! (plane);

[p] ~dn(y+1)7" < (24)! (cylindrical); (33)
(#lnz)~*  (spherical).
The development of the pressure profile with initial disturbance given by (29), and

the subsequent shock formation at the wavehead ¢ = 7 are exhibited in figures 3a
(with relaxation) and 3b (without relaxation), showing in effect that the influence of
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T

dhawe XD

pressure(p/p,ag)

Figure 3. (a) The variation of the dimensionless pressure p against the dimensionless variable
¢ using the initial profile (defined in (29)). The distortion of the profile is exhibited at various
distances before and after shock formation on the wavelet, ¢ = , in cylindrically and spherically
symmetric flow in a relaxing gas for 6 = —0.35, & = 0.05 and y = 1.4. Shock forms at (i) Zs = 5.31
(cylindrical) and (ii) £5 = 20.92 (spherical). (b) Development of the pressure profile p against
¢, using the same initial profile (as in (a)), at the wavehead, ¢ = , for § = —0.35,& = 0 and
~ = 1.4. Shock forms at (i) &s = 4.79 (cylindrical) and (ii) #s = 10.81 (spherical).

relaxation is to delay the onset of a shock wave. The evolutionary behaviour of the
pressure profile before and after the shock formation, exhibited in figure 3a, follows a
slightly different pattern from that depicted in figure 3b, in the sense that the profile,
which eventually folds into itself, develops concavity with the peak slightly advanced.
The evolutionary behaviour of shocks evolving from profile (29) are depicted in fig-
ure 4; indeed, the shock after its formation at z = xs grows to a maximum strength
at £ = 2., and then decays according to the law (32) or (33) depending on whether
the gas is relaxing or non-relaxing respectively. However, in the absence of relaxation,
a shock resulting from (29) decays faster than that evolving from the pulse (25).

(¢) Waves with amplitude not-so-small

We now seek to explore the predictions of § 3 a by considering the amplitude limit
to be not so small; in fact, here we extend the analysis of the preceding subsec-
tion to the next order by including the nonlinear quadratic terms in the perturbed
flow quantities p;, p1, etc., which were otherwise ignored in the §3b while writing
equations (14). In this instance, equations (12) and (13) reduce to

Oupr + (a+ 32)p; — q(z)pf =0, (34)
8T = {1 — (v + 1)(2p0ad) ""p1 + 3(v + 1)*(805a5) " 'pi}/ao, (35)

where g(z) = {ay + 1(3 —7)2}/2poaf. Equations (34) and (35), together with the
boundary conditions for p; and T at x = xg, yield on integration

py = (@i 1~ HOM@) (36)
wT-9)=@-o)+ L (B0 ) ae )
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0.3
¢
02 T T4 m &
) ©
g a1 479 67111 1 0.00
z ca 531 71084 1  0.05
g ez 10.81 15.0312 2 0.00
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Figure 4. Growth and decay of a shock wave which appears first at £ = &5 on the wavelet
¢ = m; comparison is made with the behaviour from the same initial and boundary data for a
non-relaxing (& = 0) gas. The effects of a relaxation and the wavefront curvature on the shock
formation distance (&s), and the distance (&.) at which the shock strength attains maximum
strength are exhibited; § = —0.35.

where
M) = [ )l d

and ¢ is the parameter distinguishing the wavelets from each other. Equations (36)
and (37) indicate that in contrast to the results of §30b, both the rate at which the
amplitude varies on any wavelet and the time taken to form a shock are influenced by
the amplitude of the signal carried by the wavelet. Indeed, for II M < 0 (respectively,
> 0) the amplitude decays more rapidly (respectively, slowly) than that predicted in
§ 3 b; the computed results are shown in figures 5a, b. The results computed for small-
amplitude disturbances in § 3 b are also incorporated into figures 5a, b for the sake of
comparison and completeness. The numerical results indicate that the shock arrival
time on a particular wavelet increases as compared to the case discussed in §3b.
Behind the shock the wavelets are determined by (37). According to Pfriem’s rule,
the shock velocity dT'/dz|s of a weak shock is given by the average of the characteristic
speeds ahead of and behind the shock. Thus, to the present approximation

dT/dz|s = {1 — (v + 1)(4poad) " (p1 — 3(y + 1)p}/4p0ag)}/ao, (38)

where p; = p1(x, ¢s) denotes the value at position = on the shock. Evaluating (37)
along the shock, we obtain the shock trajectory T'= T'(x) and, thus, an alternative
expression for the shock speed

daT dog y+1 [° 3(7 + 1)2 /ac
| " L= s [ (Opp1) do + — 5= dsp1)d
de |, daz { 2003 IO( sp1) dz + 1023 )., p1(0pp1) dz
1 7+1 3(v+1)2 ,
w : 39
+ ag { 2p0a%p1 T 8p2ad D (39)
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1.1 1(b)

0.9

Figure 5. (a) Solution for the pressure in pulse region of a cylindrically symmetric (m = 1)
flow of a relaxing gas at various distances when the disturbance amplitude is not-so-small (see
the dashed lines). Comparision is shown with the corresponding situation when the disturbance
amplitude is small (see the solid lines); the initial profile is defined in (25). (b) Solution for the
pressure in pulse region of a spherically symmetric (m = 2) flow of a relaxing gas at various
distances when the disturbance amplitude is not-so-small (see the dashed lines). Comparision is
shown with the corresponding situation when the disturbance amplitude is small (see the solid
lines); the initial profile is defined in (25). For both (a) and (b): & = 0.05, 6 = 0.35, v = 1.4.

Eliminating d7'/dz|s between (38) and (39), we obtain a differential equation for the
unknown ¢, which can be integrated numerically subject to the condition, x = x,
at ¢=0. Having determined ¢, at different locations x, the shock strength at these
respective locations and hence the evolutionary behaviour of shock decay can be
determined from (36).

4. Nonlinear geometrical acoustic solution

Here, we use a systematic procedure to discuss a small-amplitude wavelike dis-
turbance governed by the system (1) in the high-frequency or geometrical acoustics
limit, i.e. when the time scale, 7, defined by the relaxation mechanism is large com-
pared with the time 7, associated with the boundary data. The geometrical acoustics
limit then corresponds to the high-frequency condition ¢ = 7,/7 < 1. In this limit,
the perturbations of p, u, p and o caused by the wave are of size O(¢), and they
depend significantly on a fast characteristic variable £ = ¢/e. We therefore make a
change of independent variables (z,t) — (x,&) by defining z = z, t = T(x, ), and let
V(x,t) = V(z,&). It may be noted that in the high-frequency limit, V is relatively
undistorted because |0,V|, |B| = O(o0), while |0,V |, |0.V| = O(e™') as ¢ — 0, so
that |0,V < 0,V and |B| < [0;V|. We now look for solutions of (1) in the form

V(@,6) =VO + eV (2,6) + VP (z,€) + O(e?), (40)
T(x,&) =T 4 eT™ (2,8) + TP (2, ) + O(e?), (41)
Phil. Trans. R. Soc. Lond. A (1995)
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subject to the following boundary conditions at z = z:

p(z0,&) = po + 617(5)7 T(z0,§) = €, (42)

where V() refers to the uniform reference state and I7(¢) = O(1). Introducing the
expansions (40) and (41) into (4), (5), (8) and (42), using the current notations, and
equating to zero the coefficients of various powers of ¢, we arrive at the following

O(1), O(e) and O(€?) problems,
O(1) problem: 0,7 =1/ag, T (zg,8) = 0; (43)

0ep) = (po/ao)Oeut? = (1/a2)(0epV)), 9o =0,
0, TV = —(u +aV)) /a2,

O1¢) problem: D20 + poag(0,uM) + Ragu'D + (v — 1AL Jay = 0, (44)
PO (o &) =11, TO(xo,&) =&
O(€?) problem:
e (app® — pou'?) +aM (9ep'V) — pM (dgu)
+poao(Out) + Qu)(9: TH)) =0,
o (poaou® — p@)) + p) (9ep™)) + pga™ (BeuV)
+poao(9p™M)(0TM) =0,
ao(0:0@) 4+ a M (9o M) — ag A (9 TW)) = 0,
a0 (p® = poagu®) + aV(9epM) — 4p'V (FeuV) (45)

+poao{ag(Ou) + Qut) + (y = 1)AD}0, TW) =0,
0, T3 = a53(u(1) +aM)? — a52(u(2) 4 a(2))7
0.p? + poa()((gzu(?)) 4 <p0a(1) + agp™M)(9,uM)
+QPO(GOU(2) - a(l)u(l)) + Q((’Y/GO)P(Z) - POU(I))U(I)
+y = DpeZ® fag = (v = 1)pp A alV) Jaf =0,
p@(20,8) =0, T®(x,6) =0,

where

aM = (yp — adpM)/2pgag,
2 = (2poag) (vp@ — adp®)
—(8p2ad) {?pM" — 3adp™M’ + 27aZp™M pM},
A = (9,Q)0p™ + (0,Q)0p™ + (9,Q)00, (46)
2E = 1((92,Q)0pM + (92,Q)0p™M)" + (82,Q)o0 ™M)
+(92,Q)op™M pM) + (82,Q)opM o™ + (02,Q)0p Mo
+(0,Q)0p® + (8,Q)0p® + (8,Q)o0?.

(a) First-order solution

al

In view of the condition that the front ¢ = 0 is moving into a uniform state at
rest, equations (43), (44); o imply

TO = (z —z) /a0, u'’ = P!/ poao, pt) = p(l)/a?), oM =0. (47)
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On using (47) and (2) in (44)4 we obtain the following transport equation for p(*)
0p™) + (o + 02/2)p') = 0, (48)

where o is the same as in (14). Equation (48) yields on integration, subject to (44)s,
that

p = 11(E)P(x), (49)
where ¢ () is the same as in (16). Equation (44)3, in view of (44)g, (47) and (49), is
integrated to yield

TW =€ — (v +1)(2poas) ' (€)J, (50)
where J is the same as in (17). However, the lowest-order asymptotic solutions for
p and T, correct up to O(e), are similar to the solutions obtained in the §3b (see

equations (16) and (17)), and therefore the discussion in respect of shock formation
and its subsequent propagation follows on parallel lines.

(b) Second-order solution

It is of interest to enquire into the behaviour of the second-order solution. Indeed,
equations (45)1_5, on using (46),(49), (50), (45)s, and the conditions at £€=0, yield
on integration

o _ %{p@ =0 feray - 20D 20 1)

a? 2ppa? 2poal
+ 2000 P(O0(a) |,
1 (y+1) > (y+1) -
@ _ 1 o 2 - 0t LOViT?,
T e T aga TV ey (T2
+ (a+52)P(E), -
1
o = 2% _py OFD & pay
po(y —1) (v = 1) pag
1 ~ 8 .
a® = m{‘l(’y—l)poaﬁp(?)— (7" =D II*)? = 8poagaPy + 2(y+1)all*J},
+1 7 (v + 1)II? v
T(Q):—Fy / (2)5, ds + ~——55—J3(yv+1 2 (s) ds
290 |, P (5,€) Sp2a (y+1) xo‘/ (s)
n m/z ’l/)(S)J(S)dg_ mP /I P(s) ds
0 s S 2p0ad S, s )7
£
where P({'):/ II(s)ds.
Jo

Equations (51) show that the second-order flow entities are known if we can deter-
mine p. This is supplied by (45)g, which on using (51) simplifies to the following
transport equation

) 11242
9,.p? Ty (@) { AN 5 1 }
Lp Y+ (a+ 2:E)p + 9 (v )Qx (57 + 1)a Spod

m(2 — m)ag N (
8z? (v=1) 2
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Figure 6. (a) Solution for the pressure p in the pulse region of a spherically symmetric (m = 2)
flow of a relaxing gas at various distances. Pressure distribution, up tofirst and second order,
is represented by the solid and dashed lines respectively; e = 0.1, v = 1.4, @ = 0.1. ¢1: £ = 1.0;
co: & = 1.5; ¢3: & = 2.0; ca: & = 2.42253; c5: & = 3.0. (b) Solution for the pressure p in the
pulse region of a cylindrically symmetric (m = 1) flow of a relaxing gas at various distances.
Pressure distribution, up to first and second order, is represented by the solid and dashed lines
respectively; e = 0.1, y =14, & = 0.1. ¢c1: £ = 1.0; ca: £ = 1.5; ¢3: £ = 2.06756; cq: T = 2.5.

This can be integrated subject to the bounndary condition (45)7 to yield

) m(m —=2)(y+1) [* J(s) Y+ 1a (v+3 200 i
p()__.{ o o ds — 5 ( _1a+zl;T—>/on(s)ds

o) Iy
/ ds + ( 5’y—|—1)8 5 w(s)dS} o
{— b

In contrast to the first-order solution, equations (51) and (52) show that the second-
order solution depends on the integral P(£) and consequently on the precursor
wavelets; however, the conditions on the leading wavelet remain uninfluenced by
the precursor wavelets. For a small-amplitude pulse with II(£) = poa2 sin(€ag/xo),
0 < ap€/zo < m, the nonlinear distortion of the initial pressure profile, given by
(42)4, valid up to the first and second-order approximations, is depicted in figure 6
at various distances x.

5. Resonantly interacting waves

A systematic asymptotic theory for resonantly interacting weakly nonlinear hyper-
boli¢ waves, which includes the theory of non-resonantly interacting waves (Hunter
& Keller 1983) as a special case, has been proposed by Majda & Rosales (1984) and
Hunter et al. (1986). This approach has enabled us to analyse situations where many
waves coexist and interact with one another resonantly. This section is concerned
with the propagation of resonant wave modes produced by a small-amplitude high-
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frequency boundary perturbation about the uniform state, V; = Vi(o), of a relaxing
gas motion governed by the hyperbolic system (1).

The matrix A in (1) has eigenvalues \; o = u+a, and A3 4 = u; let LD, R® be the
left and right eigenvectors associated with these eigenvalues. We introduce the phase
functions ¢; (J = 1,2,3) and the corresponding fast variables, 8; = ¢, /¢, associated
with the three distinct modes of wave propagation on which the solution vector V
depends; here ¢ is the small parameter which is same as defined in the last section.
We now seek an asymptotic solution of (1) having the form

Vilz,t) = Vio + eV (a,1,0) + 2V, P (2, 1,0) + O(?), (53)
satisfying the boundary datum
Vi(wo, 1) = Vio + eV (t,t/e) + VP (1 tfe) + O(%), (54)

where Vigl) and Viff) are arbitrary, continuously differentiable and bounded functions,

and 6 = (01,0,,05). The dependence of V;'") and V,*) on fast variables 0; allows us
to deal with the interactions among various wave modes. Here, we shall use the
method of multiple scales, in which x, t and 0 are treated as independent variables.
Thus, if V() is to give the leading-order asymptotic behaviour of V uniformly in
x and t, V) must satisfy appropriate conditions. In fact, to this order, a sufficient
condition for the asymptotic expansion (53) to be uniformly valid in z, for times of
order €', is that V1, V) and their derivatives with respect to z and @ are bounded
functions of x and 6 as ¢ — 0, and they are averageable over the fast variables 6.
It may be recalled that averaging procedures are often used in the derivation of
uniformly valid asymptotic solutions to nonlinear differential equations. The basic
idea underlying this procedure, which renders the asymptotic expansion uniformly
valid, is to seperate the rapidly varying part of the solution from the slowly varying
part; this is accomplished by averaging the solution with respect to the rapid variable.
Using (53) in (1) and then equating to zero the coefficients of €® and ¢ in the resulting
expression, we obtain

((Air)o (820s) + 83k (8105))(09, V") = 0, (55)

(Air)o (Butvs) + 6ir (9,05)) (90, Vi) + 8V + (Ain)o (8, V)
+(Ov, Ai)o Vi (09, VD) (8:60) + (0. B)oVY =0, (56)

where the subscript ‘0’ denotes a value evaluated at V; = Vjg; the indices 4, k and
¢ run between 1 and 4 while the index ‘J’ runs between 1 and 3. Assuming that
each term in the sum over ‘J’ in (55) vanishes separately, so that ¢; = const.
are the characteristic curves belonging to the family dz/dt = ()\;)y; the char-
acteristic families ¢ = const. and ¢, = const. define respectively the eigenval-
ues (A1)o and (A2)o of Ag, each of multiplicity one, while the family ¢; = const.
defines the eigenvalue, (A3)o = 0, of multiplicity two. Thus, the phase functions
¢s{x,t), satisfying the boundary conditions ¢1 »(zo,t) = t, ¢3(z,t) = 0 are given by
pr2(x,t) =t F (v —20)/ag, ¢3(x,t) = (x — 20)/ag. The left and right eigenvectors of
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Ay corresponding to the eigenvalues A o = £ag and A3 = 0 are given by

LY = (0, p0a0,0,1), R = (ay°,1/ppao,0,1)7,
L(z) — (O’ _pOGana 1), R(Q) = (aaz, —1/)0061'0’0’ ]-)Ta
L® = (a},0,0,~1),  R® =(ay*,0,0,0),
L@ = (0,0, py, 0), R™ = (0,0,1/p,,0)".
Subsequently g, V) and 9,V are parallel to RV and R® respectively, while

09, V) can be expressed linearly in terms of R® and R®. Indeed, V() may be
written as

VI (@, t,0) = Vi, t) + 8; RY, (57)
where V(z,t) is an arbitrary vector and B;, which are functions of x,¢ and 6, are
arbitrary scalar functions such that 8, = 8,(x,t,0,) and By = B4(x,t,603); in fact,
G and [y are the amplitudes of waves which propagate along the characteristic

families dz/dt = a¢ and da/dt = —aqg, respectively, while the amplitudes 33 and 3,
correspond to the characteristic family da/dt = 0.

When V;E)” are denoted by the continuously differentiable and bounded functions
fi(t,t/e), evaluation of (57) at x = xq yields
o+ ag 2 (Bro + B20 + Bso) = fi,  To + (poao) (B0 — Bao) = fo, (58)
To+ 05 B = f3, Do+ Bro + Pao = fa,

where Vo = V(20,t) and B0 = B;(x0,t). Without loss of generality, the vector V'
may be chosen to be the mean of V() with respect to 6, so that the mean values of
By and (4 with respect to 8; and 63, respectively, are zero, i.e.

1t [T
TIEEO{TA ﬂJ(JJ,t,@J)d@J}:O, 711{20{?/0 ﬁ4(ﬂf,t,93)d93}=0- (59)

Using (57) in (56) and averaging the resulting equation with respect to 6, we obtain
the following linear system of equations for p, w, & and p
P + podai + Qpou =0, i+ p, 9,5 =0,
0,0 = (0,Q)op + (9,Q)oP + (05Q)0T, (60)
Op + poai(0,u + Q1) + (v — 1)po(07) = 0.
Boundary conditions for V; at x = x, can be obtained by evaluating (57) at x = xo,

and then taking the average with respect to the fast variable t* = t/e subject to the
requirement (59), i.e.

Eva : 1 - * *
Vo :7113},0{T . fi(tvt )dt }

By routine elimination of p, @, and @ in (60), we find on using (2) that p satisfies
the third-order partial differential equation,

0¢(0y — a004) (0 + ap02)D + £(0r — aov/(X/§) 02)(0r + ao/(X/€) Oz)D
—(ma/x),(0; + x)p = 0, (61)

where € = (2avaoT +v —1)/(y — 1)7 and x = (2aapr +v —1)/(y — 1)7. We seek a
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solution of (61) satisfying the initial and boundary conditions,
p(z,0) =0, Do =Dp(x0,t), Doz = —polot, (62)
a 1 (_ a2 (v — 1+ 2aapt) _ v — 1+ 2ayaoT_ mypo_
Pozz = a_g {pOtt - =1 Pot + - 1Dr 01 Uot ¢ 5

where the subscripts denote partial derivatives with respect to the indicated vari-
ables. The differential equation (61) satisfying (62) does not seem to have a solution
interms of the well-known functions of mathematical physics; however, it can be
solved with the aid of Laplace transform. Let V;(z, s) be the Laplace transform of
the mean quantity V(z,t), i.e.

Vi(:c,s)z/ Vi(z, t)e st dt.
0

Then it follows that the required solution of (61) satisfying the transformed initial
and boundary conditions (62),

. L . op _
p(l', OO) =0, Do = p(ans) and Poz = % = _‘pOSU(xO,S)a (63)
’ T=xTq
can be expressed as
plx,s) = 2" Z,(z/A), n=21(1-m),

where
A= (s*/ad) {(y = 1)(1 + s7) + 2avao7} {(v — 1)(1 + s7) + 2aao7} ",
and
Z,(zyA) = c11(8) I (zv/A) + o1 ()] (z/A), ?f n %s not an integer,
c12(8) I (zy/A) + coa(8)Kp(x/A), if nis an integer,
with I,,(z) and K,(z) being respectively the modified Bessel functions of first and
second kind. Here, the arbitrary functions ¢;; can be determined using the initial and

boundary conditions given in (63). Having obtained p, it follows from the Laplace
inversion theorem that

1 c1+iY .
Plest) = g Jim [ it (69

where c; is a real constant which is greater than the real part of singularities, if any,
in the integrand of equation (64); the corresponding expressions for p, @ and & follow
from (60).

Again using (57) in (56) and averaging the resulting equation with respect to 6;
other than 6, and taking scalar product of this equation with L®*) (the left eigen-
vector of Ay corresponding to the eigenvalue (A)o), we get the following transport
equations for the quantities 3 (k = 1,2, 3,4):

O, B = (v + 1)(2p0a8) ™' B1(0a, B1) + h1(0p, 1) + D1y + Th = 0,
OnaB2 + (v + 1)(2p008) ™" B2(0p, B2) + ha (09, B2) + Dafs + Ts = 0,
0uBs + (/o) (e, 03) — (v — 1)poag *(8,Q)0Bs — (v — 1)(9,Q)0Bs = 0,
DBs + (/o) (0, Ba) — poag(0,Q)0Bs — (05Q)oBs = 0,
Phil. Trans. R. Soc. Lond. A (1995)
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where
Ony, = 0y + aal(?t, On, = O — aglc')t,

hi = D/2poao — ¥B/2poal —u/aj, ha = —p/2poao + vp/2poai — u/ag,
D1==OZ+%Q, DQZ%Q—Q,

Ty = —(poad)™" lim ~1—/T/Tﬁ%owcw
1= —(Polg) — 72 J, J, 3892 2d03 ¢,

1 T T GJG;
3y—1 ——/ 1 4,d6
(poay) TEI;O{TQ o /s 38«91( 1abs p,

with o and §2 being the same as in equation (14). The boundary conditions for
equations in (65) are recovered from (58), and have the form

Bro = %{Poao(fz — ) + fa— Do}, Pao = 3{fs — Do + poao(to — f2)}, (66)
B30 = ai(fr — po) — fa+DPo, Bao = po(fs — o).

Under the assumption that the waves with phases ¢ and ¢3 (respectively, ¢; and
¢3) are non-interacting resonantly, the integrals involved in the expression for T}
(respectively, Ts) can be evaluated by treating o and 65 (respectively, 01 and 03) as
linearly independent; indeed, both T; and T3 turn out to be zero, and the resulting
transport equations (65); 2 are the uncoupled inviscid Burger’s equation which are
exactly the same as those obtained for acoustical wave mode dz/dt = ag and dz/dt =
—ay, respectively. Besides this, the integrals T} and T5 are again zero, whenever the
functions depend either linearly on 8; or they are functions of x and ¢ alone. In view
of the fact that 0y, 05, 03 form a linearly dependent set, i.e. 03 = %(02 —01), it follows
that the coupling terms T7 and T, do not necessarily vanish and, infact, we have

1 1 [T 0B }
T = —— lim —/ Bosr- da ¢,
1 2[)0(1,8 T‘—>oo{T 0 2803 03=(02—61)/2 ’

1 1 [T 0ps }
T 2ppal T’*OO{T 0 ﬁ1393 bom(Batr)fz

The entity T; in (65)1, which is given by (67);, represents a contribution to the wave
amplitude (; on account of nonlinear interaction between waves with phases ¢, and
¢3. Similarly, the entity Ty in (65)2, which is given by (67)2, represents coupling
between waves with phases ¢; and ¢3; this coupling produces, through nonlinear
interaction, a wave with phase ¢,. The nonlinear terms proportional to (0, 31)
and [(0g,[2) in equations (65);,2 account for the nonlinear self-interactions which
generate higher harmonics leading to the distortion of the wave profile and consequent
shock formation. The absence of nonlinear self-interaction terms in equations (65)3 4,
which decouple from the acoustical wave components 31 and 2, show that the wave
amplitudes 33 and 8, corresponding to the repeated mode 63 are linearly degenerate.
Thus, we can solve the linear system (65)3 4 for #3 and 5, and then use the expression
05 in the equations for £, and [,.

If in the boundary data (54), all the components are periodic having the same
period, then non-resonance always occurs, and the nonlinear equations (65); and
(65)2 decouple into inviscid Burger’s equations, which can be integrated using the

13

(67)
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boundary conditions (66); 5 to yield

B = Bio(C1)(A/Ag) 1 /? exp(—a(z — 1)), (68)
B = Boo(C2)(A)Ao) ' /? exp(a(d — 1)), (69)

where & = axg, & = 2/ and

o= L /  Bro(G)(A()/Ag) V2 exp(—a(a’ — wo)) da’ — / ho (2!, 1) da,
zpoa() Jxy

Zo

6= 0= o [ (@AW ) explale’ — o)) do’ ~ [ (e’ 1) dar
2p0aq J s, Jag

It may be noted that by setting V =0, = £ and 3,y = I, equation (68) turns out
to be the same as the solution (49), which was derived either by using the theory of
relatively undistorted waves or the theory of weakly nonlinear geometrical acoustics
for a single wave mode. When many waves coexist, the uniformly valid solution to
O(e), satisfying the boundary data (54), is given by (57), (68) and (69).

Let us consider a sinusoidal source at the boundary & = 1 defined as Vz;—; =
Vo + epoa? sin(t)R™) with £ = agt/exg. In view of the foregoing discussion, it follows
immediately that when all the wave modes are excited by this source, the resultant
waveform of the pressure profile to O(e) is given by

P =po+ (B + B2), (70)

where 3; and (3, are given by (68) and (69) with 319 = B2 = poad sin(f). It may be
noted that the solution (70) holds for distances & < &5 = min(Zg1, Ts2), where Zg
and &, are the distances at which the solutions (68) and (69) develop shocks. For the
spherical case, the variation of the pressure profile, given by (70), over a complete
cycle is exhibited in figure 7 at distances before the formation of a shock wave.
The waveforms at & > 1 show nonlinear effects. In fact, as the wave propagates,
it undergoes distortion, the amplitude of the crest being greater than that of the
trough. It is observed that the compression phase of the wave profile, with a rounded
crest peak, steepens at its ends to yield shocks, while the rarefaction phase, which
follows the compression phase, flattens. Further, in the absence of relaxation (& = 0),
the compressive and expansive phases of the distorted waveform exhibit symmetry,
which, however, gradually disappears when the relaxation effects are introduced (i.e.

& #0).

6. Far field behaviour

Since at large times, far from the piston location, any nonlinear convection is as-
sociated with the low-frequency characteristics, we shall study in this section the
asymptotic wave motion described by the system (1) in the low-frequency domain.
Let w be a small parameter defined as w = 7/7, = L/L,, where L, = ag7, and
L = ay7 represent respectively the attenuation length and the characteristic length
scales for the medium. When w? < 1, which means that the time and distances con-
sidered are large in comparison to the relaxation time and the relaxation length, the
situation corresponds to a low-frequency wave process (Fusco 1982). As the principal
signal (in this region) is centred on the equilibrium characteristic, the system (1) is
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Figure 7. Development of the resultant pressure profile (given by equation (70)) in a spherically
symmetric flow (m = 2) at distances before the formation of a shock wave when all waves are
excited by a sinusoidal source at the boundary & = 1; ¢ = 0.1. Solid curves refer to a non-relaxing
gas (& = 0), while the dashed and dotted curves refer to a relaxing gas with (& = 0.05) and
(& = 0.3) respectively. , =00, — — — -, &a=005------- , & =0.3.

approximated by the following reduced system:

Oip + ulyp + pOyu + Rpu =0, Owu+ ul,u+ p~10,p =0,
Op + u0sp + Yp(Ozu + Qu) + (v — 1)p(0r0 + udzo) =0, Q(p,p,0)=0.

(71)

In order to study the influence of non-equilibrium relaxation in (1) on the wave

motion, associated with (71), we consider the following stretching of the independent
variables

F=w?z, t=uw?t.
When expressed in terms of # and ¢, and then suppressing the tilde sign, the system
(1) yields the following set of equations

Oip + u0yp + pOyu + Rpu = 0, Oiu~+ ud,u+ p~10,p =0,
Op + u0zp + Yp(Ozu + 2u) + (v — 1)p(0i0 + ud,0) = 0, (72)
w? (0o + udyo) = Q(p, p, o).
In the limit w — 0, the above system yields the reduced system (71), and, there-
fore, the transformed system (72) may be regarded as a perturbed problem of an
equilibrium state characterized by (71).

We now look for an asymptotic solution of (72) exhibiting the character of a
progressive wave, i.e.

fa,t) = fo+wfO(e,t,6) + W FP(e,t,8) + ..., (73)
Phil. Trans. R. Soc. Lond. A (1995)
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where f may denote any of the dependent variables p, u, o and p; fo refers to the
known constant state, £ = ¢(x,t)/w is a fast variable, and ¢(z, t) is the phase function
to be determined.

By introducing (73) and the Taylor’s expansion of () about the uniform state
(po,0,00,p0) into the transformed system (72) and equating to zero the coefficients
of w®, w! and w?, we obtain a set of first-order partial differential equations for the
first and second-order variables. The system of equations for the first-order variables
yields, on solving, the following relations:

p(l) — F—Qp(l)’ u(l) = (pOF)_Ip(I),
o® = (v = )efpo(y + (v = De)} ~p,

with ¢(z,t) = t — (x — x)/I and I' = ag{(cy +v — ¢)/(cy? — ey +y)}1/2. Tt
may be noted that I' is a characteristic speed related to the reduced system (71).
The system of equations for the second-order variables, on multiplying by the left
eigenvector corresponding to the eigenvalue I' and taking into account the relations
(74) yields the following transport equation for p(!) in the moving set of coordinates
X and &,

(74)

Ixp — ApMaep™ + mpM j2X = 1/8525;0(1), (75)

where 0x = 9, + I'"19, and the nonlinear and dissipation coefficients A\ and v are
given by A = (y/pol' A ) {v+ 1+ 2c(y—1)} and v =2cryla{(y— 1)/A;}?, with
A; = 2af(cy+7v—¢).

Equation (75) is known as the generalized Burger’s equation which allows us to
study in detail various effects that appear in the propagation of plane (m = 0),
cylindrical (m = 1) and spherical (m = 2) waves in a dissipative medium with
a quadratic nonlinearity. The reader is referred to Crighton & Scott (1979) for a
detailed discussion of the solution of such an equation using the method of matched
asymptotic expansions.

Here, we shall consider the situation when the disturbance given at the input is in
the form of a harmonic wave

P (Xo,€) = M sin(§), (76)
where € = €ag/xo and II = O(1). By the substitution, p(*) = P(X/X,)"™/2, equa-
tion (75) and the boundary condition (76) are brought to the following form

OxP — N(X/Xo) ™?PO;P = vO}P, P(Xo,&) = IIsiné. (77)

The exact solution of (77), for m = 0, is readily obtained by use of the Cole-Hopf
transformation, which relates solution of Burger’s equation to the solution of linear
heat equation. During the first stage of propagation of a sound wave, the dissipative
processes do not play important roles, and therefore we can neglect the right side of
(77), and the solution of the reduced equation with the stated boundary condition
can be written in the form

P = IIsin(é + OP/II), (78)

where . {{(X/Xo)“/?) — DX/ X))V =1}, form =1, (79)

~ \tog(X/Xo)/ log(X./Xo), form =2,
with X and X, being respectively the shock formation distances in a cylindrically
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or spherically symmetric flow; comparing the value of @ for a plane wave with the
corresponding values for cylindrical and spherical waves, we find that the accumu-
lation of nonlinear effects in cylindrical and spherical waves takes place over large
distances on account of geometrical divergence, and a shock is always formed after
a finite running length as the dissipation of energy has been neglected.

For cylindrical and spherical cases, equation (77) does not have exact solutions,
and therefore further approximations are necessary. Following Webster & Blackstock
(1978), we use the method of successive approximations. As a first approximation, the
nonlinear term in (77) is neglected; the reduced linear equation with the boundary
condition has the solution,

P = e "X =X0)gin ¢ (80)

where v, = va2/XZ2. Substituting the first approximation for P from (80) into (77)
and then solving the resulting equation, we get a second approximation for P as

P = Me X =X0)sin é 4 LAIT2ay (1. X/ 2) ™=/ 2 fe= (22X =X0) gin(2€), (81)
with /\/(2"*)") .

et dt, if m=1,
A= ) venxo

2u, X et
/ — dt, if m=2.
2

ve X0 t
Continuing in this way, higher approximations can be made; the approximations
beyond the second are indeed very complicated.
In view of equations (78) and (80), Carry (1971) suggested the following approxi-
mate form of the solution of (77)

P = [e~ "X =X0)gin(¢ + OP/II), (82)

where © is the same as given in (79). This is an approximate solution of equation
(77) provided O exp(—vi(X — X)) < 1. The explicit solution for P obtained from
(82) can be written in the form of a Fourier series

P = e (X=X 3 2
n=1

vy Jn(n6,)sin(né), (83)
where @, = Qe~(")(X=X0) and J, is the Bessel function of nth order. This gives
exactly the same result for the first and second harmonics as obtained by successive
approximations, provided (v, )(X — X,) < 1, namely

P = [Te~ @)X =X0)gin(€) 4 %H@aoX(m“Q)/Qe_Q”*(X_XO) sin(2€),

which describes the attenuation of harmonics, the amplitudes of which change ap-
proximately according to the rule exp(—nv. (X — X)), where n refers to the number
of harmonics.

7. Conclusions

This article uses the relatively undistorted wave approximation, the method of
nonlinear geometrical acoustics and some related procedures to analyse wave motion
influenced by the effects of nonlinear convection, non-equilibrium relaxation, atten-
uation, dispersion and geometric spreading. An attempt is made to relate and unify
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these methods, which appear to be quite disjoint, by drawing the connection between
the results obtained by using them.

The method of relatively undistorted waves, which makes no assumption on the
wave amplitude, is used to obtain a solution of (1) in a region, where the motion
associated with an eigenmode is perturbed at the boundary by an applied pressure.
To the first-order approximation, the solution in the wave region shows that for each
wavelet, the amplitude dispersion and shock formation depend on the amplitude car-
ried by the wavelet; this is in contrast to the behaviour exhibited by the first-order
solution obtained by using the method of nonlinear geometrical acoustics, which
is limited to small-amplitude high-frequency disturbances. However, in the small-
amplitude limit, the relatively undistorted approximation, to the first order, yields
solution which agrees with the first-order solution obtained by using the method of
nonlinear geometrical acoustics. In this connection, it is worthwhile to mention the
fundamental papers of Clarke (1978, 1979), who analyses amplyfying effects of ambi-
ent explosion reaction on finite-amplitude waves following a systematic perturbation
procedure.

In the small-amplitude limit, conditions within the wave region, which lead to
a shock or no shock, depend strongly on the attenuation effects of the relaxation
process; the corresponding results on the leading front ¢ = 0, where (20) is exact,
are in agreement with those obtained by Johannesen & Scott (1978). When the shock
forms and propagate into an undisturbed region, its location in the weak shock limit
is found using Whitham’s equal area rule; asymptotic results for the decay of plane,
cylindrical and spherical shocks are obtained, which when specialized to non-relaxing
gases, agree fully with the earlier results (Whitham 1974). In order to trace the early
history of shock decay after its formation, we consider two specific examples in which
the small amplitude disturbance at the boundary is either a pulse or a periodic wave.

The distortion of the pulse, as it propagates, is described by equations (25)—(28);
the profiles are computed for cylindrical and spherical motions to elucidate the ef-
fect of the attenuation rate «, and the results for both relaxing and non-relaxing
gasdynamic configurations are shown in figures 1 and 2. A visible depression and
flattening of the peak, and an increase in the shock formation distance indicate that
the disturbance is undergoing a general attenuation owing to an increase in the re-
laxation rate or the wavefront curvature. The shock strength after its formation on
¢ = 0 at ¢ = x, grows to a maximum strength and then decays in accordance
with the asymptotic results (32) for plane, cylindrical and spherical motions. The
decay behaviour of cylindrical and spherical shocks is in qualitative agreement with
that presented by Clarke (1984) for plane waves. Indeed, there is a general lowering
of the shock strength owing to an increase in the relaxation rate or the wavefront
curvature. The development of the periodic wave form and the subsequent shock
formation, which are described by equations (29)-(32), are exhibited in figures 3a, b.
Evolutionary behaviour of the pressure profile before and after the shock forma-
tion, depicted in figure 3a, follows a slightly different pattern from that illustrated
in figure 3b in the sense that the profile, which eventually folds into itself, develops
concavities with its peak slightly advanced; the effect of the attenuation rate o upon
the pressure profile is marked, the higher value leading to an enhancement of the
distortion of profiles from the initial shape. Variations of the shock strength with
distance z for the initial profiles (25) and (29) are exhibited in figure 4. The shock
grows to a maximum strength at « = x.; in fact, at any station z, the shock evolving
from (29) is stronger than that from the pulse (25). The effect of relaxation rate and
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the wavefront curvature is to depress the peaks and shift x, to a larger value; the re-
duction in shock strength at any station increases with an increase in «. However, in
the absence of relaxation, a shock evolving from the periodic waveform decays faster
than that from the pulse, as is evident from the asymptotic results (23) and (33).
The subtleties concealed by the solution, in §3a, obtained by using the relatively
undistorted approximation to the first order have not however been exhaustively re-
vealed by the studies in § 3 b, which analyses the wave motion on the assumption that
the disturbances are of small amplitude. We have therefore examined certain aspects
in more detail in §3c¢. It may be noted that the method of relatively undistorted
waves, in §30b, implies a restriction on the solution in the form of condition (21),
which indeed corresponds to the slow modulation approximation. However, we have
been unable to predict how this approximation can be used for a finite-amplitude
situation to obtain higher-order corrections using a systematic expansion procedure.
Nevertheless, in a not so small disturbance situation, some of the essential features
of wave motions that finally develop can still be identified by extending the analysis
of the preceding subsection to the next order (see § 3 ¢); the solution exhibits that in
contrast to the small-amplitude situation both the rate at which amplitude varies on
any wavelet and the time taken to form a shock are influenced by the signal carried by
the wavelet. Indeed, the shock arrival time on a wavelet increases as compared to the
corresponding small-amplitude case; the computed results are shown in figures 5a, b.

In §4, we use the theory of nonlinear geometrical acoustics to obtain small-
amplitude high-frequency wave like solution of (1) in the form of regular asymptotic
expansions. Here we calculate the asymptotic solution up to the second order. The
solution correct up to the order O(e), which describes the effects of amplitude disper-
sion, pulse distortion and shock formation, is equivalent to the solution obtained in
§3b (see equations (16) and (17)) by using the relatively undistorted approximation
to the first order. The second-order correction, in contrast to the O(e) approximation
depends on the precursor wavelets, displaying the phenomenon of dispersion. Numer-
ical results are given showing how the distortion of a sinusoidal pressure profile is
influenced by the second-order correction term; the results are depicted in figure 6.
Section 5 uses the theory of weakly nonlinear geometrical acoustics to analyse situ-
ation where many waves coexist and interact with one another resonantly; indeed,
we look for high-frequency wave solutions which are modulated by a slowly vary-
ing carrier. The basic idea underlying the procedure, which renders the asymptotic
expansion uniformly valid, is to separate the rapidly varying part of the solution
from the slowly varying part; this is accomplished by averaging the solution with
respect to the fast variables. Transport equations for the amplitudes 3; of waves,
which propagate along the characteristic families of the system (1), are in general
integro-differential equations; these equations account for possible nonlinear resonant
interactions between various wave modes. However, if the interactions among waves
are non-resonant, the transport equations are uncoupled inviscid Burger’s equations.
The coupling terms in the transport equations represent the amount of a gasdynamic
wave mode produced through the interaction of another gasdynamic wave and an
entropy wave. We notice that in the flow configuration under consideration, a gasdy-
namic wave interacts only in the presence of an entropy wave. The nonlinear terms in
the transport equations account for self interaction leading to the distortion of wave
profile and consequent shock formation; the absence of these terms in the transport
equations for 83 and (4 shows that the corresponding waves are linearly degenerate.
The solution obtained in §3a for a single wave mode is recovered as a special case.
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As an illustration, we have discussed the resultant waveform when all wave modes
are excited by a sinusoidal source at the boundary. The solution for the resultant
pressure profile, which is uniformly valid to O(e), is computed at distances before
the formation of a shock wave and the results are exhibited in figure 7. It is observed
that the compression phase of the wave profile, with a rounded crest peak, steepens
at its ends to yield shocks, while the rarefaction phase, which follows the compres-
sion phase, flattens. Further, in the absence of relaxation (o = 0), the compressive
and expansive phases of the waveform exhibit symmetry, which, however, gradually
disappears when the relaxation effects are introduced.

The work of §6, which exploits the ideas of previous sections on high-frequency
wave process, deals with an asymptotic approach to the low-frequency problem.
Some aspects of this problem for a plane motion have been touched upon before;
the papers best known are those by Blythe (1969), Ockendon & Spence (1969) and
Crighton & Scott (1979). Here, we use a different approach to obtain the evolution
equation in a unified manner for plane, cylindrical and spherical motion of a relaxing
gas. An approximation through a stretching of the independent variables describes
a singular perturbation of the equilibrium state described by the reduced system,
which represents a wave motion with propagation speed less than the frozen sound
speed; the wave amplitude along characteristic rays of the reduced system satisfies
a transport equation of Burger’s type, which has been treated using the method
of successive approximations. The approximate solution exhibits the property that
the nonlinear steepening is diffused by the dissipative mechanism on account of
relaxation; the geometric spreading further contributes to this mechanism against
any convective steepening. Thus, in contrast to the high-frequency solution in §3a,
the low-frequency solution, to the first order of approximation, remains shock free.
We thank the learned referees for many helpful suggestions. One of us (C.R.) thanks the Council

of Scientific Industrial Research (Government Of India) for the award of a Senior Research
Fellowship.
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